login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357721
a(n) = Sum_{k=0..floor(n/2)} (-n)^k * Stirling1(n,2*k).
2
1, 0, -2, 9, -28, 0, 1200, -16464, 167904, -1393200, 7429240, 43124400, -2404571904, 55590286752, -1027511503200, 16489054310400, -222885864448000, 1994839594780032, 14489184835474272, -1470395490046560000, 54581408106475622400, -1608207353670788640000
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
a(n) = n! * [x^n] cos( sqrt(n) * log(1+x) ).
a(n) = (-1)^n * ( (sqrt(n) * i)_n + (-sqrt(n) * i)_n )/2, where (x)_n is the Pochhammer symbol and i is the imaginary unit.
PROG
(PARI) a(n) = sum(k=0, n\2, (-n)^k*stirling(n, 2*k, 1));
(PARI) a(n) = round(n!*polcoef(cos(sqrt(n)*log(1+x+x*O(x^n))), n));
(PARI) a(n) = (-1)^n*round((prod(k=0, n-1, sqrt(n)*I+k)+prod(k=0, n-1, -sqrt(n)*I+k)))/2;
CROSSREFS
Main diagonal of A357720.
Sequence in context: A115186 A243560 A090900 * A155472 A100293 A202679
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 10 2022
STATUS
approved