The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A357718 Expansion of e.g.f. cos( sqrt(3) * log(1+x) ). 2
1, 0, -3, 9, -24, 60, -84, -756, 13104, -157248, 1795248, -20900880, 254007936, -3250473408, 43922668608, -626830626240, 9437477107968, -149644407564288, 2493958878657792, -43592393744250624, 797394015216175104, -15230735270523601920 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-3)^k * Stirling1(n,2*k).
a(n) = (-1)^n * ( (sqrt(3) * i)_n + (-sqrt(3) * i)_n )/2, where (x)_n is the Pochhammer symbol and i is the imaginary unit.
a(0) = 1, a(1) = 0; a(n) = -(2*n-3) * a(n-1) - (n^2-4*n+7) * a(n-2).
PROG
(PARI) my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cos(sqrt(3)*log(1+x)))))
(PARI) a(n) = sum(k=0, n\2, (-3)^k*stirling(n, 2*k, 1));
(PARI) a(n) = (-1)^n*round((prod(k=0, n-1, sqrt(3)*I+k)+prod(k=0, n-1, -sqrt(3)*I+k)))/2;
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; v[2]=0; for(i=2, n, v[i+1]=-(2*i-3)*v[i]-(i^2-4*i+7)*v[i-1]); v;
CROSSREFS
Column k=3 of A357720.
Sequence in context: A360197 A109175 A120539 * A086796 A034330 A264685
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 10 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 19:35 EDT 2024. Contains 372738 sequences. (Running on oeis4.)