login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357726
Expansion of e.g.f. cos( sqrt(3) * (exp(x) - 1) ).
4
1, 0, -3, -9, -12, 45, 465, 2394, 7827, 639, -250410, -2588553, -17773635, -84525480, -105849399, 3569654115, 56100280308, 561682625769, 4227837863181, 20472943653306, -38990802816489, -2621206974761253, -42512769453705474, -495174030273565173
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-3)^k * Stirling2(n,2*k).
a(n) = 1; a(n) = -3 * Sum_{k=0..n-1} binomial(n-1, k) * A357737(k).
a(n) = ( Bell_n(sqrt(3) * i) + Bell_n(-sqrt(3) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Cos[Sqrt[3](Exp[x]-1)], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 20 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cos(sqrt(3)*(exp(x)-1)))))
(PARI) a(n) = sum(k=0, n\2, (-3)^k*stirling(n, 2*k, 2));
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(3)*I)+Bell_poly(n, -sqrt(3)*I)))/2;
CROSSREFS
Column k=3 of A357728.
Sequence in context: A366065 A137344 A029524 * A045769 A262539 A101537
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 10 2022
STATUS
approved