login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A357726 Expansion of e.g.f. cos( sqrt(3) * (exp(x) - 1) ). 4
1, 0, -3, -9, -12, 45, 465, 2394, 7827, 639, -250410, -2588553, -17773635, -84525480, -105849399, 3569654115, 56100280308, 561682625769, 4227837863181, 20472943653306, -38990802816489, -2621206974761253, -42512769453705474, -495174030273565173 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-3)^k * Stirling2(n,2*k).
a(n) = 1; a(n) = -3 * Sum_{k=0..n-1} binomial(n-1, k) * A357737(k).
a(n) = ( Bell_n(sqrt(3) * i) + Bell_n(-sqrt(3) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Cos[Sqrt[3](Exp[x]-1)], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 20 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cos(sqrt(3)*(exp(x)-1)))))
(PARI) a(n) = sum(k=0, n\2, (-3)^k*stirling(n, 2*k, 2));
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(3)*I)+Bell_poly(n, -sqrt(3)*I)))/2;
CROSSREFS
Column k=3 of A357728.
Sequence in context: A366065 A137344 A029524 * A045769 A262539 A101537
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 10 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 22:48 EDT 2024. Contains 371639 sequences. (Running on oeis4.)