login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357728
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cos( sqrt(k) * (exp(x) - 1) ).
6
1, 1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, -2, -3, 0, 1, 0, -3, -6, -6, 0, 1, 0, -4, -9, -10, -5, 0, 1, 0, -5, -12, -12, 10, 33, 0, 1, 0, -6, -15, -12, 45, 190, 266, 0, 1, 0, -7, -18, -10, 100, 465, 1106, 1309, 0, 1, 0, -8, -21, -6, 175, 852, 2394, 4438, 4905, 0, 1, 0, -9, -24, 0, 270, 1345, 4004, 7827, 9978, 11516, 0
OFFSET
0,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
T(n,k) = Sum_{j=0..floor(n/2)} (-k)^j * Stirling2(n,2*j).
T(n,k) = ( Bell_n(sqrt(k) * i) + Bell_n(-sqrt(k) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, -1, -2, -3, -4, -5, ...
0, -3, -6, -9, -12, -15, ...
0, -6, -10, -12, -12, -10, ...
0, -5, 10, 45, 100, 175, ...
PROG
(PARI) T(n, k) = sum(j=0, n\2, (-k)^j*stirling(n, 2*j, 2));
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
T(n, k) = round((Bell_poly(n, sqrt(k)*I)+Bell_poly(n, -sqrt(k)*I)))/2;
CROSSREFS
Columns k=0-4 give: A000007, A121867, A357725, A357726, A357727.
Main diagonal gives A357729.
Sequence in context: A305806 A064722 A259748 * A357681 A357720 A357712
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Oct 11 2022
STATUS
approved