login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357712
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * log(1-x) ).
3
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 3, 6, 12, 0, 1, 0, 4, 9, 26, 60, 0, 1, 0, 5, 12, 42, 140, 360, 0, 1, 0, 6, 15, 60, 240, 896, 2520, 0, 1, 0, 7, 18, 80, 360, 1614, 6636, 20160, 0, 1, 0, 8, 21, 102, 500, 2520, 12474, 55804, 181440, 0, 1, 0, 9, 24, 126, 660, 3620, 20160, 108900, 525168, 1814400, 0
OFFSET
0,13
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
T(n,k) = Sum_{j=0..floor(n/2)} k^j * |Stirling1(n,2*j)|.
T(n,k) = ( (sqrt(k))_n + (-sqrt(k))_n )/2, where (x)_n is the Pochhammer symbol.
T(0,k) = 1, T(1,k) = 0; T(n,k) = (2*n-3) * T(n-1,k) - (n^2-4*n+4-k) * T(n-2,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 6, 9, 12, 15, ...
0, 12, 26, 42, 60, 80, ...
0, 60, 140, 240, 360, 500, ...
PROG
(PARI) T(n, k) = sum(j=0, n\2, k^j*abs(stirling(n, 2*j, 1)));
(PARI) T(n, k) = round((prod(j=0, n-1, sqrt(k)+j)+prod(j=0, n-1, -sqrt(k)+j)))/2;
CROSSREFS
Columns k=0-4 give: A000007, (-1)^n * A105752(n), A263687, A357703, A357711.
Main diagonal gives A357683.
Cf. A357681.
Sequence in context: A357728 A357681 A357720 * A298159 A123735 A155839
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 10 2022
STATUS
approved