login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105752
Expansion of e.g.f. cos(i*log(1 + x)), i = sqrt(-1).
6
1, 0, 1, -3, 12, -60, 360, -2520, 20160, -181440, 1814400, -19958400, 239500800, -3113510400, 43589145600, -653837184000, 10461394944000, -177843714048000, 3201186852864000, -60822550204416000, 1216451004088320000, -25545471085854720000, 562000363888803840000
OFFSET
0,4
COMMENTS
If the signs are ignored, this is essentially the same as A001710, whose e.g.f. is cos(i*log(1 - x)) = cosh(log(1 - x)).
The sequence 0,1,1,3,12,60,... has e.g.f. -Im(sin(i*log(1 - x))) = -sinh(log(1 - x)); the sequence 0,1,-1,3,-12,60,... has e.g.f. Im(sin(i*log(1 + x))) = sinh(log(1 + x)).
LINKS
FORMULA
E.g.f.: cos(i*log(1 + x)), i = sqrt(-1).
E.g.f.: 1/2*(1 + x + 1/(1 + x)). - Sergei N. Gladkovskii, May 15 2013
Let Q(k,x) = 1 + (k+2)*x/(1 - x/(x + 1/Q(k+1,x))), then g.f.: 1 + (Q(0,sqrt(-x)) - 1)*x^2/(2*(sqrt(-x) - x)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x^2/2*G(0), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
For n > 1, a(n) = (-1)^n * n! / 2. - Vaclav Kotesovec, Feb 25 2014
Conjecture: a(n) = Sum_{k=0..n} Stirling1(n, 2*k). - Benedict W. J. Irwin, Oct 19 2016
E.g.f.: cosh(log(1 + x)). - Jianing Song, Apr 06 2019
MATHEMATICA
CoefficientList[Series[1/2*(1+x+1/(1+x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(1/2*(1+x+1/(1+x)))) \\ Joerg Arndt, May 15 2013
CROSSREFS
Cf. A001710.
Sequence in context: A089057 A077134 A001710 * A177138 A053532 A357594
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 18 2005
STATUS
approved