login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105749
Number of ways to use the elements of {1,...,k}, 0 <= k <= 2n, once each to form a sequence of n sets, each having 1 or 2 elements.
8
1, 2, 14, 222, 6384, 291720, 19445040, 1781750880, 214899027840, 33007837322880, 6290830003852800, 1456812592995513600, 402910665227270323200, 131173228963370155161600, 49656810289225281849907200, 21628258853895305337293568000, 10739534026001485514941587456000
OFFSET
0,2
COMMENTS
Equivalently, number of sequences of n labeled items such that each item occurs just once or twice. - David Applegate, Dec 08 2008
Also, number of assembly trees for a certain star graph, see Vince-Bona, Theorem 4. - N. J. A. Sloane, Oct 08 2012
LINKS
R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
Andrew Vince and Miklos Bona, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012.
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * (n+k)! / 2^k.
a(n) = n! * A001515(n).
A003011(n) = Sum_{k=0..n} C(n, k)*a(k).
a(n) = Gamma(n+1)*Hypergeometric2F0([-n, n+1], [], -1/2). - Peter Luschny, Jul 29 2014
a(n) ~ sqrt(Pi) * 2^(n + 1) * n^(2*n + 1/2) / exp(2*n - 1). - Vaclav Kotesovec, Nov 27 2017
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = n*(2*n-1)*a(n-1) + n*(n-1)*a(n-2).
a(n) = e * sqrt(2/Pi) * n! * BesselK(n+1/2, 1).
a(n) = ((2*n)!/2^n) * Hypergeometric1F1(-n, -2*n, 2).
G.f.: (-2/x) * Integrate_{t=0..oo} exp(-t)/((t+1)^2 - 1 - 2/x) dt.
G.f.: e*( exp(-sqrt(1 + 2/x)) * ExpIntegralEi(-1 + sqrt(1 + 2/x)) - exp(sqrt(1 + 2/x)) * ExpIntegralEi(-1 - sqrt(1 + 2/x)) )/sqrt(x^2 + 2*x).
E.g.f.: ((1-x)/x) * Hypergeometric1F1(1, 3/2, -(1-x)^2/(2*x)).
E.g.f.: (1/(1-x))*Hypergeometric2F0([1, 1/2]; []; 2*x/(1-x)^2). (End)
EXAMPLE
a(2) = 14 = |{ ({1},{2}), ({2},{1}), ({1},{2,3}), ({2,3},{1}), ({2},{1,3}), ({1,3},{2}), ({3},{1,2}), ({1,2},{3}), ({1,2},{3,4}), ({3,4},{1,2}), ({1,3},{2,4}), ({2,4},{1,3}), ({1,4},{2,3}), ({2,3},{1,4}) }|.
MAPLE
a:= n-> add(binomial(n, k)*(n+k)!/2^k, k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2012
MATHEMATICA
f[n_]:= Sum[Binomial[n, k]*(n+k)!/2^k, {k, 0, n}]; Table[f[n], {n, 0, 20}]
PROG
(Magma) [(&+[Binomial(n, j)*Factorial(n+j)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
(SageMath) [sum(binomial(n, j)*factorial(n+j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
CROSSREFS
Replace "sets" by "lists": A099022.
Column n=2 of A181731.
Sequence in context: A372278 A197210 A153668 * A251692 A338187 A323693
KEYWORD
nonn,easy
AUTHOR
Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 23 2005
STATUS
approved