login
A003011
Number of permutations of up to n kinds of objects, where each kind of object can occur at most two times.
(Formerly M3071)
7
1, 3, 19, 271, 7365, 326011, 21295783, 1924223799, 229714292041, 35007742568755, 6630796801779771, 1527863209528564063, 420814980652048751629, 136526522051229388285611
OFFSET
0,2
COMMENTS
E.g.f. A(x)=y satisfies 0=(2x^3+2x^2)y''+(-3x^3+4x-1)y'+(x^3-x^2-2x+3)y. - Michael Somos, Mar 15 2004
Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a sequence of n (possibly empty) sets, each having at most 2 elements. - Bob Proctor, Apr 18 2005
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 17.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
n*a(n) = (2*n^3 - n^2 + n + 1)*a(n-1) + (-3*n^3 + 4*n^2 + 2*n - 3)*a(n-2) + (n^3 - 2*n^2 - n + 2)*a(n-3).
a(n) ~ sqrt(Pi)*2^(n+1)*n^(2*n+1/2)/exp(2*n-1). - Vaclav Kotesovec, Oct 19 2013
MATHEMATICA
Table[nn=2n; a=1+x+x^2/2!; Total[Range[0, nn]!CoefficientList[Series[a^n, {x, 0, nn}], x]], {n, 0, 15}] (* Geoffrey Critzer, Dec 23 2011 *)
PROG
(PARI) a(n)=local(A); if(n<0, 0, A=(1+x+x^2/2)^n; sum(k=0, 2*n, k!*polcoeff(A, k)))
CROSSREFS
a(n) = Sum[C(n, k)*A105749(k), 0<=k<=n]
Replace "sequence" with "collection" in comment: A105748.
Replace "sets" with "lists" in comment: A082765.
Sequence in context: A316294 A233240 A173799 * A338772 A376011 A231620
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Aug 18 2002
STATUS
approved