login
A181731
Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
14
1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360
OFFSET
1,5
COMMENTS
The table is enumerated along antidiagonals: A(1,0), A(2,0), A(1,1), A(3,0), A(2,1), A(1,2), A(4,0), A(3,1), A(2,2), A(1,3), ... .
LINKS
Alois P. Heinz, Antidiagonals n = 1..20
M. Kauers and D. Zeilberger, The Computational Challenge of Enumerating High-Dimensional Rook Walks, arXiv:1011.4671 [math.CO], 2010.
EXAMPLE
A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1).
Square table A(d,n) begins:
1, 1, 2, 4, 8, ...
1, 2, 14, 106, 838, ...
1, 6, 222, 9918, 486924, ...
1, 24, 6384, 2306904, 964948464, ...
1, 120, 291720, 1085674320, 4927561419120, ...
MAPLE
b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add
(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))
end:
A:= (d, n)-> b([n$d]):
seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012
MATHEMATICA
b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
CROSSREFS
Rows d=1-12 give: A011782, A051708 (from [1,1]), A144045 (from [1,1,1]), A181749, A181750, A181751, A181752, A181724, A181725, A181726, A181727, A181728.
Columns n=0-2 give: A000012, A000142, A105749.
Main diagonal gives A246623.
Sequence in context: A138678 A335997 A350297 * A278792 A343807 A340734
KEYWORD
nonn,tabl
AUTHOR
Manuel Kauers, Nov 16 2010
EXTENSIONS
Edited by Alois P. Heinz, Jul 21 2012
Minor edits by Vaclav Kotesovec, Sep 03 2014
STATUS
approved