login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350297
Triangle read by rows: T(n,k) = n!*(n-1)^k/k!.
2
1, 1, 0, 2, 2, 1, 6, 12, 12, 8, 24, 72, 108, 108, 81, 120, 480, 960, 1280, 1280, 1024, 720, 3600, 9000, 15000, 18750, 18750, 15625, 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936, 40320, 282240, 987840, 2304960, 4033680, 5647152, 6588344, 6588344, 5764801
OFFSET
0,4
COMMENTS
Rows n >= 2 are coefficients in a double summation power series for the integral of x^(1/x), and the integral of its inverse function y^(y^(y^(y^(...)))). See A350358.
FORMULA
T(n, k) = binomial(n, k)*A350269(n, k). - Peter Luschny, Dec 25 2021
T(n+1, k) = A061711(n) * (n+1) / A350149(n, k). - Robert B Fowler, Jan 11 2022
EXAMPLE
Triangle T(n,k) begins:
-----------------------------------------------------------------
n\k 0 1 2 3 4 5 6 7
-----------------------------------------------------------------
0 | 1,
1 | 1, 0,
2 | 2, 2, 1,
3 | 6, 12, 12, 8,
4 | 24, 72, 108, 108, 81,
5 | 120, 480, 960, 1280, 1280, 1024,
6 | 720, 3600, 9000, 15000, 18750, 18750, 15625,
7 | 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936.
...
MAPLE
T := (n, k) -> (n!/k!)*(n - 1)^k:
seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 24 2021
MATHEMATICA
T[1, 0] := 1; T[n_, k_] := n!*(n - 1)^k/k!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 24 2021 *)
CROSSREFS
Cf. A000142 (first column), A062119 (second column), A065440 (main diagonal), A055897 (subdiagonal), A217701 (row sums).
Sequence in context: A362708 A138678 A335997 * A181731 A278792 A343807
KEYWORD
easy,nonn,tabl
AUTHOR
Robert B Fowler, Dec 23 2021
STATUS
approved