OFFSET
0,4
COMMENTS
T(n,k) are the denominators in a double summation power series for the definite integral of x^x. First expand x^x = exp(x*log(x)) = Sum_{n>=0} (x*log(x))^n/n!, then integrate each of the terms to get the double summation for F(x) = Integral_{t=0..x} t^t = Sum_{n>=1} (Sum_{k=0..n-1} (-1)^(n+k+1)*x^n*(log(x))^k/T(n,k)).
This is a definite integral, because lim {x->0} F(x) = 0.
The value of F(1) = 0.78343... = A083648 is known humorously as the Sophomore's Dream (see Borwein et al.).
REFERENCES
Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters 2004.
William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton NJ 2005.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Eric Weisstein's World of Mathematics, Sophomore's dream
Wikipedia, Sophomore's dream
FORMULA
EXAMPLE
Triangle T(n,k) begins:
--------------------------------------------------------------------------
n/k 0 1 2 3 4 5 6 7 8
--------------------------------------------------------------------------
0 | 1,
1 | 1, 1,
2 | 4, 2, 2,
3 | 27, 9, 6, 6,
4 | 256, 64, 32, 24, 24,
5 | 3125, 625, 250, 150, 120, 120,
6 | 46656, 7776, 2592, 1296, 864, 720, 720,
7 | 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040,
8 | 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320.
...
MAPLE
T := (n, k) -> n^(n - k)*k!:
seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 07 2022
MATHEMATICA
T[n_, k_]:= n^(n-k)*k!; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Amiram Eldar, Dec 27 2021 *)
PROG
(Magma)
A350149:= func< n, k | n^(n-k)*Factorial(k) >;
[A350149(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2022
(SageMath)
def A350149(n, k): return n^(n-k)*factorial(k)
flatten([[A350149(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 31 2022
CROSSREFS
KEYWORD
AUTHOR
Robert B Fowler, Dec 27 2021
STATUS
approved