login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350149
Triangle read by rows: T(n, k) = n^(n-k)*k!.
2
1, 1, 1, 4, 2, 2, 27, 9, 6, 6, 256, 64, 32, 24, 24, 3125, 625, 250, 150, 120, 120, 46656, 7776, 2592, 1296, 864, 720, 720, 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040, 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320
OFFSET
0,4
COMMENTS
T(n,k) are the denominators in a double summation power series for the definite integral of x^x. First expand x^x = exp(x*log(x)) = Sum_{n>=0} (x*log(x))^n/n!, then integrate each of the terms to get the double summation for F(x) = Integral_{t=0..x} t^t = Sum_{n>=1} (Sum_{k=0..n-1} (-1)^(n+k+1)*x^n*(log(x))^k/T(n,k)).
This is a definite integral, because lim {x->0} F(x) = 0.
The value of F(1) = 0.78343... = A083648 is known humorously as the Sophomore's Dream (see Borwein et al.).
REFERENCES
Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters 2004.
William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton NJ 2005.
LINKS
Eric Weisstein's World of Mathematics, Sophomore's dream
FORMULA
T(n, 0) = A000312(n).
T(n, 1) = A000169(n).
T(n, 2) = A003308(n), n >= 2.
Sum_{k=0..n} T(n, k) = A112541(n).
T(n, n) = A000142(n).
T(n, n-1) = A000142(n), n >= 1.
T(n,k) = A061711(n) * (n+1) / A350297(n+1,k). - Robert B Fowler, Jan 11 2022
EXAMPLE
Triangle T(n,k) begins:
--------------------------------------------------------------------------
n/k 0 1 2 3 4 5 6 7 8
--------------------------------------------------------------------------
0 | 1,
1 | 1, 1,
2 | 4, 2, 2,
3 | 27, 9, 6, 6,
4 | 256, 64, 32, 24, 24,
5 | 3125, 625, 250, 150, 120, 120,
6 | 46656, 7776, 2592, 1296, 864, 720, 720,
7 | 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040,
8 | 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320.
...
MAPLE
T := (n, k) -> n^(n - k)*k!:
seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 07 2022
MATHEMATICA
T[n_, k_]:= n^(n-k)*k!; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Amiram Eldar, Dec 27 2021 *)
PROG
(Magma)
A350149:= func< n, k | n^(n-k)*Factorial(k) >;
[A350149(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2022
(SageMath)
def A350149(n, k): return n^(n-k)*factorial(k)
flatten([[A350149(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 31 2022
CROSSREFS
Cf. A000312 (first column), A000169 (2nd column), A003308 (3rd column excluding first term), A000142 (main diagonal), A000142 (2nd diagonal excluding first term), A112541 (row sums).
Values of the integral: A083648, A073009.
Sequence in context: A075418 A199221 A096870 * A350609 A261253 A328334
KEYWORD
easy,nonn,tabl
AUTHOR
Robert B Fowler, Dec 27 2021
STATUS
approved