login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003308
a(n) = 2*n^(n-2).
3
2, 2, 6, 32, 250, 2592, 33614, 524288, 9565938, 200000000, 4715895382, 123834728448, 3584320788074, 113387824750592, 3892390136718750, 144115188075855872, 5724846103019631586, 242879062193188503552
OFFSET
1,1
COMMENTS
When n >=2, right side of binomial sum n-> Sum_{i=1..n-1} ( i^(n-i-1) * (n-i)^(i-1) *binomial(n, i) ). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.38)
LINKS
FORMULA
a(n) = 2*n^(n-2).
a(n) = 2 * A000272(n).
E.g.f.: (-2)*Integral_{t=0..x} LambertW(-t)/t dt = (-1)*LambertW(-x) * (LambertW(-x) + 2). - G. C. Greubel, Jul 31 2022
MATHEMATICA
Table[2*n^(n-2), {n, 20}] (* Harvey P. Dale, Sep 18 2021 *)
PROG
(Magma) [2*n^(n-2): n in [1..30]]; // G. C. Greubel, Jul 31 2022
(SageMath) [2*n^(n-2) for n in (1..30)] # G. C. Greubel, Jul 31 2022
CROSSREFS
Cf. A000272.
Sequence in context: A094303 A117394 A267073 * A180069 A032185 A179236
KEYWORD
nonn
AUTHOR
Joseph Moser (jmoser(AT)wcupa.edu)
STATUS
approved