login
A003308
a(n) = 2*n^(n-2).
3
2, 2, 6, 32, 250, 2592, 33614, 524288, 9565938, 200000000, 4715895382, 123834728448, 3584320788074, 113387824750592, 3892390136718750, 144115188075855872, 5724846103019631586, 242879062193188503552
OFFSET
1,1
COMMENTS
When n >=2, right side of binomial sum n-> Sum_{i=1..n-1} ( i^(n-i-1) * (n-i)^(i-1) *binomial(n, i) ). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.38)
LINKS
FORMULA
a(n) = 2*n^(n-2).
a(n) = 2 * A000272(n).
E.g.f.: (-2)*Integral_{t=0..x} LambertW(-t)/t dt = (-1)*LambertW(-x) * (LambertW(-x) + 2). - G. C. Greubel, Jul 31 2022
MATHEMATICA
Table[2*n^(n-2), {n, 20}] (* Harvey P. Dale, Sep 18 2021 *)
PROG
(Magma) [2*n^(n-2): n in [1..30]]; // G. C. Greubel, Jul 31 2022
(SageMath) [2*n^(n-2) for n in (1..30)] # G. C. Greubel, Jul 31 2022
CROSSREFS
Cf. A000272.
Sequence in context: A094303 A117394 A267073 * A180069 A032185 A179236
KEYWORD
nonn
AUTHOR
Joseph Moser (jmoser(AT)wcupa.edu)
STATUS
approved