OFFSET
1,2
COMMENTS
From Petros Hadjicostas, May 11 2020: (Start)
R. J. Mathar's conjecture is correct and this is identical to A064847 starting at n = 3. To see why this is the case, consider the sequences u(n) and v(n) defined by u(1) = v(1) = 1, and u(k+1) = u(k) + v(k), v(k+1) = u(k)*v(k) for k >= 1. Then u(n) = A003686(n) and v(n) = A064847(n) for n >= 1.
Then v(n) = u(n+1) - u(n), and thus Sum_{k=1..n-1} v(k) = u(n) - u(1) = u(n) - 1 for n >= 2. Then v(n-1) + ... + v(3) + (v(2) + 1) + v(1) = u(n) for n >= 3, and hence v(n)*(v(n-1) + ... + v(3) + (v(2) + 1) + v(1)) = u(n)*v(n) = v(n+1).
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..17
FORMULA
MATHEMATICA
nxt[{t1_, t2_, a_}]:=Module[{c=t1*a}, {t1+t2, c, c}]; Join[{1}, NestList[nxt, {1, 2, 2}, 10][[All, 2]]] (* Harvey P. Dale, Aug 30 2020 *)
PROG
(PARI) lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]); ); va; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 29 2004
EXTENSIONS
More terms from Gareth McCaughan, Jun 10 2004
STATUS
approved