login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094303
a(1) = 1, a(2) = 2, and a(n+1) = a(n) * sum of all previous terms up to a(n-1) for n >= 2.
8
1, 2, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
OFFSET
1,2
COMMENTS
From Petros Hadjicostas, May 11 2020: (Start)
R. J. Mathar's conjecture is correct and this is identical to A064847 starting at n = 3. To see why this is the case, consider the sequences u(n) and v(n) defined by u(1) = v(1) = 1, and u(k+1) = u(k) + v(k), v(k+1) = u(k)*v(k) for k >= 1. Then u(n) = A003686(n) and v(n) = A064847(n) for n >= 1.
Then v(n) = u(n+1) - u(n), and thus Sum_{k=1..n-1} v(k) = u(n) - u(1) = u(n) - 1 for n >= 2. Then v(n-1) + ... + v(3) + (v(2) + 1) + v(1) = u(n) for n >= 3, and hence v(n)*(v(n-1) + ... + v(3) + (v(2) + 1) + v(1)) = u(n)*v(n) = v(n+1).
Since v(1) = 1 = a(1) and v(2) + 1 = 2 = a(2), the sequence (v(1), v(2) + 1, v(3), ..., v(n), ...) is identical to the current sequence. Hence, a(n) = v(n) = u(n+1) - u(n) = A003686(n+1) - A003686(n) for n >= 3. (End)
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..17
FORMULA
Conjecture: a(n) = A003686(n+1) - A003686(n) for n >= 3. - R. J. Mathar, Apr 24 2007
MATHEMATICA
nxt[{t1_, t2_, a_}]:=Module[{c=t1*a}, {t1+t2, c, c}]; Join[{1}, NestList[nxt, {1, 2, 2}, 10][[All, 2]]] (* Harvey P. Dale, Aug 30 2020 *)
PROG
(PARI) lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]); ); va; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
See A064847 for another version.
Sequence in context: A097801 A164347 A052584 * A117394 A267073 A003308
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 29 2004
EXTENSIONS
More terms from Gareth McCaughan, Jun 10 2004
STATUS
approved