login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094305 Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n). 8
1, 3, 3, 6, 12, 6, 10, 30, 30, 10, 15, 60, 90, 60, 15, 21, 105, 210, 210, 105, 21, 28, 168, 420, 560, 420, 168, 28, 36, 252, 756, 1260, 1260, 756, 252, 36, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55, 66 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275). - David Wasserman, Oct 04 2007

Third slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o)+a(m,n-1,o)+a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006

Triangle T(n,k), 0<=k<=n, read by rows given by [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] DELTA [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007

T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple.  For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string. - Geoffrey Critzer, Apr 06 2013

T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Jul 30 2013

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152.

LINKS

Reinhard Zumkeller, Rows n = 0..100 of table, flattened

Mircea Merca, A Special Case of the Generalized Girard-Waring Formula J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.

FORMULA

T(n,k) = Sum_{i=1..k+1} (-1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,k-i+1). - Mircea Merca, Apr 05 2012

O.g.f.: 1/(1 - x - y*x)^3.  - Geoffrey Critzer, Apr 06 2013

EXAMPLE

Triangle begins:

1

3 3

6 12 6

10 30 30 10

15 60 90 60 15

21 105 210 210 105 21

...

The n-th row is the product of the n-th triangular number and the n-th row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}.

MAPLE

A094305:= proc(n, k) (n+1)*(n+2)/2 * binomial(n, k); end;

MATHEMATICA

nn=10; f[list_]:=Select[list, #>0&]; a=1/(1-x-y x); Map[f, CoefficientList[Series[a^3, {x, 0, nn}], {x, y}]]//Grid

(* Geoffrey Critzer, Apr 06 2013 *)

Flatten[Table[((n+1)(n+2))/2 Binomial[n, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Aug 31 2014 *)

PROG

(Haskell)

a094305 n k = a094305_tabl !! n !! k

a094305_row n = a094305_tabl !! n

a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl

-- Reinhard Zumkeller, Jul 30 2013

CROSSREFS

For a closely related array that also includes a row and column of zeros see A129533.

Columns include A000217. Row sums are A001788. Cf. A094306.

Cf. A003506, A121547, A121306, A119800, A000217, A007318.

Sequence in context: A110952 A025250 A326498 * A057963 A250301 A261954

Adjacent sequences:  A094302 A094303 A094304 * A094306 A094307 A094308

KEYWORD

nonn,tabl,easy

AUTHOR

Amarnath Murthy, Apr 29 2004

EXTENSIONS

Edited by Ralf Stephan, Feb 04 2005

Further comments from David Wasserman, Oct 04 2007

Further editing by N. J. A. Sloane, Oct 07 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 15:17 EST 2020. Contains 331961 sequences. (Running on oeis4.)