

A094305


Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n).


8



1, 3, 3, 6, 12, 6, 10, 30, 30, 10, 15, 60, 90, 60, 15, 21, 105, 210, 210, 105, 21, 28, 168, 420, 560, 420, 168, 28, 36, 252, 756, 1260, 1260, 756, 252, 36, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55, 66
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275).  David Wasserman, Oct 04 2007
Third slice along the 12plane in the cube a(m,n,o) = a(m1,n,o)+a(m,n1,o)+a(m,n,o1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals).  Thomas Wieder, Aug 06 2006
Triangle T(n,k), 0<=k<=n, read by rows given by [3,1,2/3,1/6,1/2,0,0,0,0,0,0,...] DELTA [3,1,2/3,1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.  Philippe Deléham, Oct 07 2007
T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple. For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string.  Geoffrey Critzer, Apr 06 2013
T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n.  Reinhard Zumkeller, Jul 30 2013


REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152.


LINKS

Reinhard Zumkeller, Rows n = 0..100 of table, flattened
Mircea Merca, A Special Case of the Generalized GirardWaring Formula J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.


FORMULA

T(n,k) = Sum_{i=1..k+1} (1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,ki+1).  Mircea Merca, Apr 05 2012
O.g.f.: 1/(1  x  y*x)^3.  Geoffrey Critzer, Apr 06 2013


EXAMPLE

Triangle begins:
1
3 3
6 12 6
10 30 30 10
15 60 90 60 15
21 105 210 210 105 21
...
The nth row is the product of the nth triangular number and the nth row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}.


MAPLE

A094305:= proc(n, k) (n+1)*(n+2)/2 * binomial(n, k); end;


MATHEMATICA

nn=10; f[list_]:=Select[list, #>0&]; a=1/(1xy x); Map[f, CoefficientList[Series[a^3, {x, 0, nn}], {x, y}]]//Grid
(* Geoffrey Critzer, Apr 06 2013 *)
Flatten[Table[((n+1)(n+2))/2 Binomial[n, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Aug 31 2014 *)


PROG

(Haskell)
a094305 n k = a094305_tabl !! n !! k
a094305_row n = a094305_tabl !! n
a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl
 Reinhard Zumkeller, Jul 30 2013


CROSSREFS

For a closely related array that also includes a row and column of zeros see A129533.
Columns include A000217. Row sums are A001788. Cf. A094306.
Cf. A003506, A121547, A121306, A119800, A000217, A007318.
Sequence in context: A110952 A025250 A326498 * A057963 A250301 A261954
Adjacent sequences: A094302 A094303 A094304 * A094306 A094307 A094308


KEYWORD

nonn,tabl,easy


AUTHOR

Amarnath Murthy, Apr 29 2004


EXTENSIONS

Edited by Ralf Stephan, Feb 04 2005
Further comments from David Wasserman, Oct 04 2007
Further editing by N. J. A. Sloane, Oct 07 2007


STATUS

approved



