The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094305 Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n). 8
 1, 3, 3, 6, 12, 6, 10, 30, 30, 10, 15, 60, 90, 60, 15, 21, 105, 210, 210, 105, 21, 28, 168, 420, 560, 420, 168, 28, 36, 252, 756, 1260, 1260, 756, 252, 36, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55, 66 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275). - David Wasserman, Oct 04 2007 Third slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o)+a(m,n-1,o)+a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006 Triangle T(n,k), 0<=k<=n, read by rows given by [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] DELTA [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007 T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple.  For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string. - Geoffrey Critzer, Apr 06 2013 T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Jul 30 2013 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152. LINKS Reinhard Zumkeller, Rows n = 0..100 of table, flattened Mircea Merca, A Special Case of the Generalized Girard-Waring Formula J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. FORMULA T(n,k) = Sum_{i=1..k+1} (-1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,k-i+1). - Mircea Merca, Apr 05 2012 O.g.f.: 1/(1 - x - y*x)^3.  - Geoffrey Critzer, Apr 06 2013 EXAMPLE Triangle begins: 1 3 3 6 12 6 10 30 30 10 15 60 90 60 15 21 105 210 210 105 21 ... The n-th row is the product of the n-th triangular number and the n-th row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}. MAPLE A094305:= proc(n, k) (n+1)*(n+2)/2 * binomial(n, k); end; MATHEMATICA nn=10; f[list_]:=Select[list, #>0&]; a=1/(1-x-y x); Map[f, CoefficientList[Series[a^3, {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Apr 06 2013 *) Flatten[Table[((n+1)(n+2))/2 Binomial[n, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Aug 31 2014 *) PROG (Haskell) a094305 n k = a094305_tabl !! n !! k a094305_row n = a094305_tabl !! n a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl -- Reinhard Zumkeller, Jul 30 2013 CROSSREFS For a closely related array that also includes a row and column of zeros see A129533. Columns include A000217. Row sums are A001788. Cf. A094306. Cf. A003506, A121547, A121306, A119800, A000217, A007318. Sequence in context: A110952 A025250 A326498 * A057963 A250301 A261954 Adjacent sequences:  A094302 A094303 A094304 * A094306 A094307 A094308 KEYWORD nonn,tabl,easy AUTHOR Amarnath Murthy, Apr 29 2004 EXTENSIONS Edited by Ralf Stephan, Feb 04 2005 Further comments from David Wasserman, Oct 04 2007 Further editing by N. J. A. Sloane, Oct 07 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 15:17 EST 2020. Contains 331961 sequences. (Running on oeis4.)