login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094304
Sum of all possible sums formed from all but one of the previous terms, starting 1.
3
1, 0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
OFFSET
1,4
COMMENTS
Apart from initial 1, same sequence as A001563. Additive analog of A057438.
a(1) = 1, for n >= 2: a(n) = sum of previous terms * (n-2) = (Sum_(i=1...n-2) a(i)) * (n-2). a(n) = A001563(n-2) = A094258(n-1) for n >= 3. - Jaroslav Krizek, Oct 16 2009
FORMULA
a(n) = (n-2)!(n-2) for n>=2. - Emeric Deutsch, May 01 2008
G.f.: x*T(0), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2013
a(n) = S1(n,1) - S1(n-1,1), where S1 are the unsigned Stirling cycle numbers. - Peter Luschny, Apr 10 2016
a(n) = A122974(n-1,n-1). - Alois P. Heinz, Nov 24 2019
EXAMPLE
a(2) = 0 as there is only one previous term and empty sum is taken to be 0.
a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4.
a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
MAPLE
a := n -> (n-2)*(n-2)!: 1, seq(a(n), n=2..23); # Emeric Deutsch, May 01 2008
MATHEMATICA
In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* Ryan Propper, May 28 2006 *)
PROG
(PARI) v=vector(30); v[1]=1; v[2]=0; for(n=3, #v, s=0; for(i=1, 2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2, s=s+sum(j=1, #vb, if(vb[j], v[n-#vb+j-1])))); v[n]=s; print1(s, ", ")) /* Ralf Stephan, Sep 22 2013 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 29 2004
EXTENSIONS
Edited by N. J. A. Sloane, May 29 2006
STATUS
approved