login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057438
a(1) = 1; a(n+1) = (Product_{k = 1..n} [a(k)]) * (Sum_{j = 1..n} [1/a(j)]).
6
1, 1, 2, 5, 27, 739, 546391, 298543324411, 89128116550480609893151, 7943821159836055611643954282977557048699079331, 63104294619459055797454850600852928915607093463575707111291209057699988334565551829102647591
OFFSET
1,3
FORMULA
a(n) = a(n-1)^2+a(n-1)a(n-2)-a(n-2)^3 (valid for all n>3). - Ivan Sadofschi, Feb 22 2011
a(n) = a(n-1)^2+A074056(n-2) where A074056 is partial product of A057438. Close to a(n-1)^2+a(n-1)*0.365177806085453... and 1.1087260396143829635274191...^(2^n). - Henry Bottomley, Aug 14 2002
EXAMPLE
a(5) = a(1)*a(2)*a(3)*a(4)*(1/a(1) + 1/a(2) + 1/a(3) + 1/a(4)) = 1*1*2*5*(1 + 1 + 1/2 + 1/5) = 27.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[1/a[n - k], {k, n - 1}] Product[a[n - k], {k, n - 1}]; Table[ a[n], {n, 11}] (* Robert G. Wilson v, Jun 14 2005 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Sep 08 2000
EXTENSIONS
More terms from Leroy Quet, Sep 08 2000
STATUS
approved