The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208221 a(n)=(a(n-1)^2*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1. 3
 1, 1, 1, 1, 2, 5, 27, 2921, 106653026, 1658455747832683945, 869174798276372512100586962107665002957113 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is the case a=2, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10). The next term (a(11)) has 97 digits. - Harvey P. Dale, Dec 17 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..13 Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001); Advances in Applied Mathematics 28 (2002), 119-144. MAPLE y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^2+y(n-2))/y(n-4): end: seq(y(n), n=0..11); MATHEMATICA a[n_] := a[n] = If[n <= 3, 1, (a[n-1]^2*a[n-3]^2 + a[n-2])/a[n-4]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 24 2017 *) RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^2 a[n-3]^2+ a[n-2])/ a[n-4]}, a, {n, 12}] (* Harvey P. Dale, Dec 17 2017 *) CROSSREFS Cf. A048736, A208218, A208220, A208222, A208224. Sequence in context: A057438 A002795 A208218 * A208224 A208227 A127357 Adjacent sequences: A208218 A208219 A208220 * A208222 A208223 A208224 KEYWORD nonn AUTHOR Matthew C. Russell, Apr 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)