OFFSET
0,5
COMMENTS
This is the case a=2, b=1, c=1, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..21
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
MAPLE
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)*y(n-3)^2+y(n-2))/y(n-4): end:
seq(y(n), n=0..16);
MATHEMATICA
a[n_] := a[n] = (a[n - 1]*a[n - 3]^2 + a[n - 2])/a[n - 4];
a[0] = a[1] = a[2] = a[3] = 1;
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 01 2018 *)
PROG
(Magma) [n le 4 select 1 else (Self(n-1)*Self(n-3)^2+Self(n-2))/Self(n-4): n in [1..17]]; // Bruno Berselli, Apr 26 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 25 2012
STATUS
approved