login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208219
a(n)=(a(n-1)^3*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
2
1, 1, 1, 1, 2, 9, 731, 781235791, 2145650135491172007486084385, 802327342392981520933850619811649523436811893002103478524225246677189521545661182074
OFFSET
0,5
COMMENTS
This is the case a=1, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(10)) has 258 digits. - Harvey P. Dale, Sep 21 2016
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
MAPLE
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)+y(n-2))/y(n-4): end:
seq(y(n), n=0..9);
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^3 a[n-3]+ a[n-2])/ a[n-4]}, a, {n, 10}] (* Harvey P. Dale, Sep 21 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 25 2012
STATUS
approved