login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208228
a(n)=(a(n-1)^3*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
3
1, 1, 1, 1, 2, 9, 731, 6249886265, 800859597553373777918076329400178
OFFSET
0,5
COMMENTS
This is the case a=4, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
MAPLE
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^4+y(n-2))/y(n-4): end:
seq(y(n), n=0..9);
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^3 a[n-3]^4+ a[n-2])/ a[n-4]}, a, {n, 10}] (* Harvey P. Dale, Jan 08 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 25 2012
STATUS
approved