The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208222 a(n) = (a(n-1)^3*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1. 4
 1, 1, 1, 1, 2, 9, 731, 1562471573, 154486807085783774292345385804 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is the case a=2, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..11 Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144. MAPLE y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^2+y(n-2))/y(n-4): end: seq(y(n), n=0..9); MATHEMATICA a[n_]:=If[n<4, 1, (a[n - 1]^3*a[n - 3]^2 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 11}] (* Indranil Ghosh, Mar 19 2017 *) nxt[{a_, b_, c_, d_}]:={b, c, d, (d^3 b^2+c)/a}; NestList[nxt, {1, 1, 1, 1}, 10][[All, 1]] (* Harvey P. Dale, May 31 2020 *) CROSSREFS Cf. A048736, A208219, A208221, A208225. Sequence in context: A023366 A000284 A208219 * A208225 A208228 A262089 Adjacent sequences: A208219 A208220 A208221 * A208223 A208224 A208225 KEYWORD nonn AUTHOR Matthew C. Russell, Apr 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)