The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208218 a(n)=(a(n-1)^2*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1. 3
 1, 1, 1, 1, 2, 5, 27, 1463, 5350936, 154615586811211, 1295349936263652139582251464117, 6137049788665571444030885529267632764941063995324839557922175605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is the case a=1, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..14 Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144. MAPLE y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)+y(n-2))/y(n-4): end: seq(y(n), n=0..11); MATHEMATICA RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^2*a[n-3]+ a[n-2])/ a[n-4]}, a, {n, 12}] (* Harvey P. Dale, Dec 25 2016 *) PROG (Magma) [n le 4 select 1 else (Self(n-1)^2*Self(n-3)+Self(n-2))/Self(n-4): n in [1..12]]; // Bruno Berselli, Apr 24 2012 CROSSREFS Cf. A048736. Sequence in context: A058182 A057438 A002795 * A208221 A208224 A208227 Adjacent sequences: A208215 A208216 A208217 * A208219 A208220 A208221 KEYWORD nonn AUTHOR Matthew C. Russell, Apr 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)