The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208218 a(n)=(a(n-1)^2*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1. 3
1, 1, 1, 1, 2, 5, 27, 1463, 5350936, 154615586811211, 1295349936263652139582251464117, 6137049788665571444030885529267632764941063995324839557922175605 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
This is the case a=1, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
MAPLE
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)+y(n-2))/y(n-4): end:
seq(y(n), n=0..11);
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^2*a[n-3]+ a[n-2])/ a[n-4]}, a, {n, 12}] (* Harvey P. Dale, Dec 25 2016 *)
PROG
(Magma) [n le 4 select 1 else (Self(n-1)^2*Self(n-3)+Self(n-2))/Self(n-4): n in [1..12]]; // Bruno Berselli, Apr 24 2012
CROSSREFS
Cf. A048736.
Sequence in context: A058182 A057438 A002795 * A208221 A208224 A208227
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 24 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)