login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094306
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 4.
2
1, 3, 10, 30, 88, 252, 712, 1992, 5536, 15312, 42208, 116064, 318592, 873408, 2392192, 6547584, 17912320, 48985344, 133926400, 366085632, 1000548352, 2734316544, 7471826944, 20416481280, 55785005056, 152419749888
OFFSET
2,2
COMMENTS
In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1} Sin(j*r*Pi/m)*Sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n) is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) -s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k.
FORMULA
a(n) = ((1-sqrt(3))^n + (1+sqrt(3))^n - 2^n)/4.
a(n) = (1/3)*Sum_{k=1..5} Sin(Pi*k/3)*Sin(2*Pi*k/3)*(1+2*cos(Pi*k/6))^n.
From Colin Barker, Oct 29 2019: (Start)
G.f.: x^2*(1 - x) / ((1 - 2*x)*(1 - 2*x - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) for n>4.
(End)
MATHEMATICA
f[n_] := FullSimplify[ TrigToExp[(1/3)Sum[ Sin[Pi*k/3] Sin[2Pi*k/3] (1 + 2Cos[Pi*k/6])^n, {k, 1, 5}]]]; Table[ f[n], {n, 2, 27}] (* Robert G. Wilson v, Jun 18 2004 *)
PROG
(PARI) Vec(x^2*(1 - x) / ((1 - 2*x)*(1 - 2*x - 2*x^2)) + O(x^35)) \\ Colin Barker, Oct 29 2019
CROSSREFS
Sequence in context: A027205 A026937 A320564 * A257596 A261336 A026109
KEYWORD
easy,nonn
AUTHOR
Herbert Kociemba, Jun 02 2004
STATUS
approved