login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026937
a(n) = Sum_{k=0..n} (k+1)*T(n, n-k), where T is given by A008288.
5
1, 3, 10, 30, 87, 245, 676, 1836, 4925, 13079, 34446, 90090, 234227, 605865, 1560200, 4002072, 10230201, 26069995, 66251090, 167941494, 424753615, 1072057117, 2700704172, 6791746500, 17052595573, 42752015487, 107035180630, 267634562754, 668407232235, 1667467065425
OFFSET
0,2
FORMULA
G.f.: (1-x)/(1 - 2*x - x^2)^2.
a(n) = Sum_{k=0..n+1} A000129(k)*A001333(n+1-k). - Graeme McRae, Aug 03 2006 and Michel Marcus, Aug 01 2023
a(n) = A006645(n+2) - A006645(n+1). - R. J. Mathar, Jan 27 2011
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 20 2012
a(n) = ((n+2)/2)*A000129(n+1). - G. C. Greubel, May 25 2021
a(n) = ((n+2)/8)*((sqrt(2) + 2)*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n). - Peter Luschny, Jul 31 2023
MAPLE
with (combinat):seq(add(fibonacci(n, 2), k=0..n)/2, n=1..27); # Zerinvary Lajos, May 25 2008
MATHEMATICA
CoefficientList[Series[(1-x)/(1-2x-x^2)^2, {x, 0, 40}], x] (* Harvey P. Dale, Mar 22 2011 *)
LinearRecurrence[{4, -2, -4, -1}, {1, 3, 10, 30}, 40] (* Vincenzo Librandi, Jun 20 2012 *)
Table[(1/2)*(n+2)*Fibonacci[n+1, 2], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
PROG
(Magma) I:=[1, 3, 10, 30]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 20 2012
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x-x^2)^2) \\ Altug Alkan, Sep 20 2018
(PARI) a(n) = my(w=quadgen(8)); (n/8)*((2+w)*(1+w)^n - (w-2)*(1-w)^n); \\ Michel Marcus, Jul 31 2023
(Sage) [(1/2)*(n+2)*lucas_number1(n+1, 2, -1) for n in (0..40)] # G. C. Greubel, May 25 2021
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved