login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320564
Expansion of Product_{k>=1} (1 + x^k/(1 - x)^k)^k.
4
1, 1, 3, 10, 30, 87, 249, 705, 1974, 5471, 15032, 40997, 111079, 299151, 801139, 2134251, 5657895, 14930596, 39232009, 102673794, 267692321, 695440442, 1800582809, 4646964755, 11956293758, 30673060344, 78470890246, 200218512582, 509557661691, 1293664233400, 3276659862518
OFFSET
0,3
COMMENTS
First differences of the binomial transform of A026007.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*(1 - x)^k*x^k/(k*((1 - x)^k - x^k)^2)).
a(n) ~ Zeta(3)^(1/6) * 2^(n - 13/12) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4 + (3*Zeta(3))^(2/3) * n^(1/3)/8 - Zeta(3)/16) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 15 2018
MAPLE
seq(coeff(series(mul((1+x^k/(1-x)^k)^k, k=1..n), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 15 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (1 - x)^k x^k/(k ((1 - x)^k - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 15 2018
STATUS
approved