login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320565
a(n) = ((1 + sqrt(4*n^2 + 1))^n - (1 - sqrt(4*n^2 + 1))^n)/(2^n * sqrt(4*n^2 + 1)).
0
0, 1, 1, 10, 33, 701, 4033, 132301, 1089921, 48460114, 520210801, 29215223489, 386721507745, 26250621340841, 413242502386337, 32899021525375426, 600383148312628737, 54846079150716441949, 1138470675779123657425, 117372939125452004885621
OFFSET
0,4
COMMENTS
a(0) = 0 assuming 0^0 = 1, or using the limit for n -> 0 (assuming n is a real variable); the same value for a(0) arises from other formulae for this sequence.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Polynomial
FORMULA
a(n) = 2^(1 - n) * Sum_{k=0..floor(n/2)} binomial(n, 2*k + 1)*(4*n^2 + 1)^k.
a(n) = 2 * (i*n)^n * sinh(n*arctanh(sqrt(4*n^2 + 1)))/sqrt(4*n^2 + 1), assuming 0^0 = 1 for n = 0.
For n > 0, a(n) = n^(n - 1) * F_n(1/n), where F_n(x) is the Fibonacci polynomial.
For n > 0, a(n) = sqrt(Pi/4)*i*(-i*n)^n*LegendreP((n - 1)/2, -1/2, -1/(2*n^2) - 1) / (4*n^2 + 1)^(1/4). - Peter Luschny, Oct 15 2018
MATHEMATICA
a[0] = Limit[n^(n - 1) Fibonacci[n, 1/n], n -> 0]; (* a[0] = 0 *)
a[n_] := a[n] = n^(n - 1) Fibonacci[n, 1/n];
Table[a[n], {n, 0, 19}]
PROG
(PARI) for(n=0, 20, print1( 2^(1-n)*sum(k=0, floor(n/2), binomial(n, 2*k+1)*(4*n^2+1)^k) , ", ")) \\ G. C. Greubel, Oct 15 2018
(Magma) [2^(1-n)*(&+[Binomial(n, 2*k+1)*(4*n^2+1)^k: k in [0..Floor(n/2)]]): n in [0..20]]; // G. C. Greubel, Oct 15 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved