login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219848
Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array
1
10, 33, 218, 1302, 6367, 28116, 116212, 452177, 1661479, 5791018, 19242699, 61244524, 187461137, 553667969, 1582231440, 4384799386, 11806014470, 30933256186, 78981312321, 196763074685, 478829103169, 1139452276535
OFFSET
1,1
COMMENTS
Column 4 of A219852
LINKS
FORMULA
Empirical: a(n) = (1/4420880996869850977271808000000)*n^29 + (1/43555477801673408643072000000)*n^28 + (1/1209874383379816906752000000)*n^27 + (43/439954321229024329728000000)*n^26 + (239/46533630129992957952000000)*n^25 + (1271/10636258315426961817600000)*n^24 + (21559/2090280711721608806400000)*n^23 + (2358089/9711366287998530355200000)*n^22 + (414811/73570956727261593600000)*n^21 + (96602227/294283826909046374400000)*n^20 + (897677023/809280523999877529600000)*n^19 + (4533921193/24339263879695564800000)*n^18 + (931787469289/1162808331852455608320000)*n^17 + (164434612939/35532722134528819200000)*n^16 + (82237113442087/32571661956651417600000)*n^15 - (7016537322680609/130286647826605670400000)*n^14 + (695260733531027/704028294040780800000)*n^13 - (5073772635108677/6084815969923891200000)*n^12 - (507672575885083506979/2317485136908740198400000)*n^11 + (120144564891354934729/23647807519476940800000)*n^10 - (25084670412668166038597/505800327499923456000000)*n^9 + (11002475205125616793367/84300054583320576000000)*n^8 + (55130981973962294196913/19008835837415424000000)*n^7 - (13650131787757855786477/349729663675392000000)*n^6 + (44536807843513217954827921/204212979447789312000000)*n^5 - (23789530616592898876307/58346565556511232000)*n^4 - (1428365140707503731/767394854226000)*n^3 + (2161164468159204637/160787493266400)*n^2 - (27831547648057/840219900)*n + 31438 for n>7
EXAMPLE
Some solutions for n=3
..1..1..1..1....1..0..0..0....0..0..0..0....1..1..1..1....1..1..0..0
..1..1..0..0....1..0..0..0....0..0..0..0....1..1..1..1....1..1..0..0
..1..1..0..2....1..1..0..0....0..0..0..0....1..1..1..2....2..1..0..1
CROSSREFS
Sequence in context: A219818 A264251 A140866 * A320565 A177221 A045087
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 29 2012
STATUS
approved