login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320567
Expansion of e.g.f. exp(x) * Product_{k>=1} (1 + x^k/k!).
3
1, 2, 4, 11, 32, 97, 355, 1423, 5696, 23141, 108149, 559693, 2913971, 14806365, 75692999, 432849976, 2780749376, 18237870285, 115493756737, 708062095921, 4354275076517, 29539724932771, 227955214198529, 1836106089485736, 14279737884301139, 105409744347318897
OFFSET
0,2
COMMENTS
Binomial transform of A007837.
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(x + Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} binomial(n,k)*A007837(k).
MAPLE
seq(coeff(series(factorial(n)*exp(x)*mul(1+x^k/factorial(k), k=1..n), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 15 2018
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
d=numtheory[divisors](k))*(n-1)!/(n-k)!*b(n-k), k=1..n))
end:
a:= n-> add(b(n-i)*binomial(n, i), i=0..n):
seq(a(n), n=0..27); # Alois P. Heinz, Sep 27 2019
MATHEMATICA
nmax = 25; CoefficientList[Series[Exp[x] Product[(1 + x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 25; CoefficientList[Series[Exp[x + Sum[Sum[(-1)^(k + 1) x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
Sequence in context: A059305 A191586 A120848 * A135339 A148170 A156043
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 15 2018
STATUS
approved