login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320563
Expansion of Product_{k>=1} 1/(1 - x^k/(1 - x)^k)^k.
5
1, 1, 4, 13, 41, 125, 374, 1103, 3213, 9259, 26430, 74806, 210095, 585890, 1623240, 4470232, 12241799, 33349751, 90410255, 243977941, 655553258, 1754265279, 4676358086, 12420299846, 32873598566, 86721264126, 228051843891, 597905347237, 1563071037798, 4074973824099
OFFSET
0,3
COMMENTS
First differences of the binomial transform of A000219.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x)^k)).
a(n) ~ Zeta(3)^(7/36) * 2^(n - 11/18) * exp(3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Zeta(3)^(2/3) * n^(1/3) / 2^(5/3) + (1 - Zeta(3))/12) / (A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 15 2018
MAPLE
seq(coeff(series(mul((1-x^k/(1-x)^k)^(-k), k=1..n), x, n+1), x, n), n = 0 .. 29); # Muniru A Asiru, Oct 15 2018
MATHEMATICA
nmax = 29; CoefficientList[Series[Product[1/(1 - x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 15 2018
STATUS
approved