OFFSET
0,3
COMMENTS
First differences of the binomial transform of A000219.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x)^k)).
a(n) ~ Zeta(3)^(7/36) * 2^(n - 11/18) * exp(3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Zeta(3)^(2/3) * n^(1/3) / 2^(5/3) + (1 - Zeta(3))/12) / (A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 15 2018
MAPLE
seq(coeff(series(mul((1-x^k/(1-x)^k)^(-k), k=1..n), x, n+1), x, n), n = 0 .. 29); # Muniru A Asiru, Oct 15 2018
MATHEMATICA
nmax = 29; CoefficientList[Series[Product[1/(1 - x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 15 2018
STATUS
approved