login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190214
Expansion of (1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x).
1
1, 1, 4, 13, 41, 127, 395, 1232, 3842, 11977, 37336, 116392, 362846, 1131150, 3526285, 10992961, 34269838, 106833983, 333047961, 1038255251, 3236692893, 10090178578, 31455472326, 98060379357, 305696824386, 952989872706, 2970883650186, 9261535631926, 28872232090283
OFFSET
0,3
FORMULA
a(n) = Sum_{m=1..n} Sum_{r=m..n} (Sum_{k=m..r} binomial(k,r-k)* Sum_{j=0..m} binomial(j,-3*m+k+2*j)*binomial(m,j))))*binomial(-r+n+m-1,m-1).
MAPLE
seq(coeftayl((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x), x = 0, k), k=0..20); # Muniru A Asiru, Feb 01 2018
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x), {x, 0, 50}], x] (* G. C. Greubel, Jan 31 2018 *)
PROG
(Maxima)
a(n):=sum(sum((sum(binomial(k, r-k)*sum(binomial(j, -3*m+k+2*j)*binomial(m, j), j, 0, m), k, m, r))*binomial(-r+n+m-1, m-1), r, m, n), m, 1, n);
(PARI) x='x+O('x^30); Vec((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x)) \\ G. C. Greubel, Jan 31 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x))) // G. C. Greubel, Jan 31 2018
CROSSREFS
Sequence in context: A320563 A368344 A268989 * A052529 A049222 A239249
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 06 2011
EXTENSIONS
Terms a(16) onward added by G. C. Greubel, Jan 31 2018
STATUS
approved