Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 02 2023 13:35:53
%S 1,1,4,13,41,127,395,1232,3842,11977,37336,116392,362846,1131150,
%T 3526285,10992961,34269838,106833983,333047961,1038255251,3236692893,
%U 10090178578,31455472326,98060379357,305696824386,952989872706,2970883650186,9261535631926,28872232090283
%N Expansion of (1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x).
%H G. C. Greubel, <a href="/A190214/b190214.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 2, 3, 4, 3, 1).
%F a(n) = Sum_{m=1..n} Sum_{r=m..n} (Sum_{k=m..r} binomial(k,r-k)* Sum_{j=0..m} binomial(j,-3*m+k+2*j)*binomial(m,j))))*binomial(-r+n+m-1,m-1).
%p seq(coeftayl((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x), x = 0, k), k=0..20); # _Muniru A Asiru_, Feb 01 2018
%t CoefficientList[Series[(1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x), {x, 0, 50}], x] (* _G. C. Greubel_, Jan 31 2018 *)
%o (Maxima)
%o a(n):=sum(sum((sum(binomial(k,r-k)*sum(binomial(j,-3*m+k+2*j)*binomial(m,j),j,0,m),k,m,r))*binomial(-r+n+m-1,m-1),r,m,n),m,1,n);
%o (PARI) x='x+O('x^30); Vec((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x)) \\ _G. C. Greubel_, Jan 31 2018
%o (Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x))) // _G. C. Greubel_, Jan 31 2018
%K nonn
%O 0,3
%A _Vladimir Kruchinin_, May 06 2011
%E Terms a(16) onward added by _G. C. Greubel_, Jan 31 2018