login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057963 Triangle T(n,k) of number of minimal 2-covers of a labeled n-set that cover k points of that set uniquely (k=2,..,n). 12
1, 3, 3, 6, 12, 7, 10, 30, 35, 15, 15, 60, 105, 90, 31, 21, 105, 245, 315, 217, 63, 28, 168, 490, 840, 868, 504, 127, 36, 252, 882, 1890, 2604, 2268, 1143, 255, 45, 360, 1470, 3780, 6510, 7560, 5715, 2550, 511, 55, 495, 2310, 6930, 14322, 20790, 20955, 14025 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Row sums give A000392.

LINKS

Robert Israel, Table of n, a(n) for n = 2..10012 (rows 2 to 142, flattened)

Octavio Alberto Agustín-Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016.

Eric Weisstein's World of Mathematics, Minimal cover

FORMULA

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind. Here m=2.

From Robert Israel, Feb 18 2016: (Start)

T(n,k) = C(n,k) * (2^(k-1)-1).

G.f. of triangle: x^2*y^2/((1-x)*(1-x-x*y)*(1-x-2*x*y)). (End)

EXAMPLE

There are 90=10+30+35+15 minimal 2-covers of a labeled 5-set.

Triangle starts:

1;

3, 3;

6, 12, 7;

10, 30, 35, 15;

15, 60, 105, 90, 31;

...

MAPLE

seq(seq(binomial(n, k)*(2^(k-1)-1), k=2..n), n=2..13); # Robert Israel, Feb 18 2016

MATHEMATICA

Table[ Binomial[n, k] (2^(k-1)-1), {n, 2, 13}, {k, 2, n}] // Flatten (* Jean-François Alcover, Sep 18 2018, from Maple *)

PROG

(PARI) T(n, k) = m=2; binomial(n, k)*stirling(k, m, 2)*(2^m-m-1)^(n-k); \\ Michel Marcus, Feb 18 2016

(MAGMA) /* As triangle: */ [[Binomial(n, k)*(2^(k-1)-1): k in [2..n]]: n in [1.. 15]]; // Vincenzo Librandi, Feb 19 2016

CROSSREFS

Cf. A022166, A035347, A057669, A057964, A057965, A057966, A057967, A057968.

Sequence in context: A025250 A326498 A094305 * A250301 A261954 A112434

Adjacent sequences:  A057960 A057961 A057962 * A057964 A057965 A057966

KEYWORD

easy,nonn,tabl

AUTHOR

Vladeta Jovovic, Oct 17 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 20:17 EST 2021. Contains 349425 sequences. (Running on oeis4.)