The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057963 Triangle T(n,k) of number of minimal 2-covers of a labeled n-set that cover k points of that set uniquely (k=2,..,n). 12
 1, 3, 3, 6, 12, 7, 10, 30, 35, 15, 15, 60, 105, 90, 31, 21, 105, 245, 315, 217, 63, 28, 168, 490, 840, 868, 504, 127, 36, 252, 882, 1890, 2604, 2268, 1143, 255, 45, 360, 1470, 3780, 6510, 7560, 5715, 2550, 511, 55, 495, 2310, 6930, 14322, 20790, 20955, 14025 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Row sums give A000392. LINKS Robert Israel, Table of n, a(n) for n = 2..10012 (rows 2 to 142, flattened) Octavio Alberto Agustín-Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016. Eric Weisstein's World of Mathematics, Minimal cover FORMULA Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind. Here m=2. From Robert Israel, Feb 18 2016: (Start) T(n,k) = C(n,k) * (2^(k-1)-1). G.f. of triangle: x^2*y^2/((1-x)*(1-x-x*y)*(1-x-2*x*y)). (End) EXAMPLE There are 90=10+30+35+15 minimal 2-covers of a labeled 5-set. Triangle starts: 1; 3, 3; 6, 12, 7; 10, 30, 35, 15; 15, 60, 105, 90, 31; ... MAPLE seq(seq(binomial(n, k)*(2^(k-1)-1), k=2..n), n=2..13); # Robert Israel, Feb 18 2016 MATHEMATICA Table[ Binomial[n, k] (2^(k-1)-1), {n, 2, 13}, {k, 2, n}] // Flatten (* Jean-François Alcover, Sep 18 2018, from Maple *) PROG (PARI) T(n, k) = m=2; binomial(n, k)*stirling(k, m, 2)*(2^m-m-1)^(n-k); \\ Michel Marcus, Feb 18 2016 (Magma) /* As triangle: */ [[Binomial(n, k)*(2^(k-1)-1): k in [2..n]]: n in [1.. 15]]; // Vincenzo Librandi, Feb 19 2016 CROSSREFS Cf. A022166, A035347, A057669, A057964, A057965, A057966, A057967, A057968. Sequence in context: A025250 A326498 A094305 * A250301 A261954 A112434 Adjacent sequences: A057960 A057961 A057962 * A057964 A057965 A057966 KEYWORD easy,nonn,tabl AUTHOR Vladeta Jovovic, Oct 17 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 12:40 EST 2022. Contains 358441 sequences. (Running on oeis4.)