OFFSET
1,2
COMMENTS
T(m,n) is the number of induced paths including zero length paths in the m X n rook graph. This is also the number of induced trees in these graphs since these are the only induced trees.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
Eric Weisstein's World of Mathematics, Graph Path.
Eric Weisstein's World of Mathematics, Rook Graph.
FORMULA
T(m,n) = Sum_{j=1..min(m,n)} j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j).
T(m,n) = T(n,m).
EXAMPLE
Array begins:
===================================================
m\n| 1 2 3 4 5 6 7 ...
---+-----------------------------------------------
1 | 1 3 6 10 15 21 28 ...
2 | 3 12 33 72 135 228 357 ...
3 | 6 33 135 438 1140 2511 4893 ...
4 | 10 72 438 2224 8850 27480 70462 ...
5 | 15 135 1140 8850 55725 265665 962010 ...
6 | 21 228 2511 27480 265665 2006316 11158203 ...
7 | 28 357 4893 70462 962010 11158203 98309827 ...
...
PROG
(PARI) T(m, n) = sum(j=1, min(m, n), j!^2*binomial(m, j)*binomial(n, j)*(1 + (m+n)/2 - j))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 23 2023
STATUS
approved