OFFSET
1,8
COMMENTS
Also, T(m,n) is the number of chordless cycles of length >= 4 in the m X n rook graph.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Eric Weisstein's World of Mathematics, Chordless Cycle.
Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Rook Graph.
FORMULA
T(m,n) = Sum_{j=2..min(m,n)} binomial(m,j)*binomial(n,j)*j!*(j-1)!/2.
T(m,n) = T(n,m).
EXAMPLE
Array begins:
========================================================
m\n| 1 2 3 4 5 6 7 8 ...
---+----------------------------------------------------
1 | 0 0 0 0 0 0 0 0 ...
2 | 0 1 3 6 10 15 21 28 ...
3 | 0 3 15 42 90 165 273 420 ...
4 | 0 6 42 204 660 1650 3486 6552 ...
5 | 0 10 90 660 3940 15390 45150 109480 ...
6 | 0 15 165 1650 15390 113865 526155 1776180 ...
7 | 0 21 273 3486 45150 526155 4662231 24864588 ...
8 | 0 28 420 6552 109480 1776180 24864588 256485040 ...
...
Lower half of array as triangle T(n,k) for 1 <= k <= n begins:
0;
0, 1;
0, 3, 15;
0, 6, 42, 204;
0, 10, 90, 660, 3940;
0, 15, 165, 1650, 15390, 113865;
0, 21, 273, 3486, 45150, 526155, 4662231;
...
PROG
(PARI) T(m, n) = sum(j=2, min(m, n), binomial(m, j)*binomial(n, j)*j!*(j-1)!/2)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 23 2023
STATUS
approved