login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360849
Array read by antidiagonals: T(m,n) is the number of (undirected) cycles in the complete bipartite graph K_{m,n}.
4
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 15, 6, 0, 0, 10, 42, 42, 10, 0, 0, 15, 90, 204, 90, 15, 0, 0, 21, 165, 660, 660, 165, 21, 0, 0, 28, 273, 1650, 3940, 1650, 273, 28, 0, 0, 36, 420, 3486, 15390, 15390, 3486, 420, 36, 0, 0, 45, 612, 6552, 45150, 113865, 45150, 6552, 612, 45, 0
OFFSET
1,8
COMMENTS
Also, T(m,n) is the number of chordless cycles of length >= 4 in the m X n rook graph.
LINKS
Eric Weisstein's World of Mathematics, Chordless Cycle.
Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Rook Graph.
FORMULA
T(m,n) = Sum_{j=2..min(m,n)} binomial(m,j)*binomial(n,j)*j!*(j-1)!/2.
T(m,n) = T(n,m).
EXAMPLE
Array begins:
========================================================
m\n| 1 2 3 4 5 6 7 8 ...
---+----------------------------------------------------
1 | 0 0 0 0 0 0 0 0 ...
2 | 0 1 3 6 10 15 21 28 ...
3 | 0 3 15 42 90 165 273 420 ...
4 | 0 6 42 204 660 1650 3486 6552 ...
5 | 0 10 90 660 3940 15390 45150 109480 ...
6 | 0 15 165 1650 15390 113865 526155 1776180 ...
7 | 0 21 273 3486 45150 526155 4662231 24864588 ...
8 | 0 28 420 6552 109480 1776180 24864588 256485040 ...
...
Lower half of array as triangle T(n,k) for 1 <= k <= n begins:
0;
0, 1;
0, 3, 15;
0, 6, 42, 204;
0, 10, 90, 660, 3940;
0, 15, 165, 1650, 15390, 113865;
0, 21, 273, 3486, 45150, 526155, 4662231;
...
PROG
(PARI) T(m, n) = sum(j=2, min(m, n), binomial(m, j)*binomial(n, j)*j!*(j-1)!/2)
CROSSREFS
Rows 1..3 are A000004, A000217(n-1), A059270(n-1).
Main diagonal is A070968.
Cf. A269562, A286418, A360850 (paths), A360853.
Sequence in context: A299554 A300175 A129533 * A155999 A338034 A299904
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 23 2023
STATUS
approved