|
|
A360846
|
|
Array read by antidiagonals: T(m,n) is the number of dominating induced trees in the grid graph P_m X P_n.
|
|
3
|
|
|
1, 3, 3, 4, 8, 4, 4, 17, 17, 4, 4, 32, 65, 32, 4, 4, 66, 222, 222, 66, 4, 4, 130, 766, 1280, 766, 130, 4, 4, 262, 2685, 7629, 7629, 2685, 262, 4, 4, 522, 9450, 46032, 78981, 46032, 9450, 522, 4, 4, 1046, 33158, 278419, 820308, 820308, 278419, 33158, 1046, 4
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A dominating induced tree in a graph is an acyclic connected induced subgraph whose vertices are a dominating set.
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Grid Graph.
|
|
FORMULA
|
T(n,m) = T(m,n).
|
|
EXAMPLE
|
Table starts:
=======================================================
m\n| 1 2 3 4 5 6 7 ...
---+---------------------------------------------------
1 | 1 3 4 4 4 4 4 ...
2 | 3 8 17 32 66 130 262 ...
3 | 4 17 65 222 766 2685 9450 ...
4 | 4 32 222 1280 7629 46032 278419 ...
5 | 4 66 766 7629 78981 820308 8520021 ...
6 | 4 130 2685 46032 820308 14605388 259809527 ...
7 | 4 262 9450 278419 8520021 259809527 7904828158 ...
...
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|