login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266616
Number of OFF (white) cells in the n-th iteration of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.
1
0, 3, 3, 4, 8, 3, 11, 4, 16, 3, 19, 4, 24, 3, 27, 4, 32, 3, 35, 4, 40, 3, 43, 4, 48, 3, 51, 4, 56, 3, 59, 4, 64, 3, 67, 4, 72, 3, 75, 4, 80, 3, 83, 4, 88, 3, 91, 4, 96, 3, 99, 4, 104, 3, 107, 4, 112, 3, 115, 4, 120, 3, 123, 4, 128, 3, 131, 4, 136, 3, 139, 4
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 02 2016 and Apr 18 2019: (Start)
a(n) = a(n-2)+a(n-4)-a(n-6) for n>5.
G.f.: x*(3+3*x+x^2+5*x^3-4*x^4) / ((1-x)^2*(1+x)^2*(1+x^2)).
(End)
MATHEMATICA
rule=41; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Length[catri[[k]]]-nbc[[k]], {k, 1, rows}] (* Number of White cells in stage n *)
CROSSREFS
Cf. A266608.
Sequence in context: A246023 A049927 A329216 * A360846 A340429 A147679
KEYWORD
nonn
AUTHOR
Robert Price, Jan 01 2016
STATUS
approved