login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155999
Triangle T(n, k) = (-1)^n*StirlingS2(n, k)*StirlingS2(n, n-k), read by rows.
1
1, 0, 0, 0, 1, 0, 0, -3, -3, 0, 0, 6, 49, 6, 0, 0, -10, -375, -375, -10, 0, 0, 15, 2015, 8100, 2015, 15, 0, 0, -21, -8820, -105350, -105350, -8820, -21, 0, 0, 28, 33782, 1014300, 2893401, 1014300, 33782, 28, 0, 0, -36, -117810, -8004150, -54009270, -54009270, -8004150, -117810, -36, 0
OFFSET
0,8
COMMENTS
Row sums are: {1, 0, 1, -6, 61, -770, 12160, -228382, 4989621, -124262532, 3475892685, ...}.
FORMULA
T(n, k) = (-1)^n*StirlingS2(n, k)*StirlingS2(n, n-k)
EXAMPLE
Triangle begins as:
1;
0, 0;
0, 1, 0;
0, -3, -3, 0;
0, 6, 49, 6, 0;
0, -10, -375, -375, -10, 0;
0, 15, 2015, 8100, 2015, 15, 0;
0, -21, -8820, -105350, -105350, -8820, -21, 0;
0, 28, 33782, 1014300, 2893401, 1014300, 33782, 28, 0;
0, -36, -117810, -8004150, -54009270, -54009270, -8004150, -117810, -36, 0;
MATHEMATICA
T[n_, k_]:= (-1)^n*StirlingS2[n, k]*StirlingS2[n, n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Sage)
def A155999(n, k): return (-1)^n*stirling_number2(n, k)*stirling_number2(n, n-k)
flatten([[A155999(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 27 2021
(Magma)
A155999:= func< n, k | (-1)^n*StirlingSecond(n, k)*StirlingSecond(n, n-k) >;
[A155999(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 27 2021
(PARI) T(n, k) = (-1)^n*stirling(n, k, 2)*stirling(n, n-k, 2);
matrix(10, 10, n, k, n--; k--; if (n>=k, T(n, k))) \\ Michel Marcus, Feb 27 2021
CROSSREFS
Cf. A048993.
Sequence in context: A300175 A129533 A360849 * A338034 A299904 A221768
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Feb 01 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 27 2021
STATUS
approved