login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155998
Triangle read by rows: T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 - (-1)^k)/2.
1
0, 1, 1, 0, 4, 0, 1, 3, 3, 1, 0, 8, 0, 8, 0, 1, 5, 10, 10, 5, 1, 0, 12, 0, 40, 0, 12, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 16, 0, 112, 0, 112, 0, 16, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 20, 0, 240, 0, 504, 0, 240, 0, 20, 0
OFFSET
0,5
COMMENTS
Row sums are: A155559(n) = {0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...}.
FORMULA
T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 - (-1)^k)/2.
From G. C. Greubel, Dec 01 2019: (Start)
T(n, k) = binomial(n, k)*(2 - (-1)^k*(1 + (-1)^n))/2.
Sum_{k=0..n} T(n,k) = 2^n = A155559(n) for n >= 1.
Sum_{k=0..n-1} T(n,k) = (2^(n+1) - (1-(-1)^n))/2 = A051049(n), n >= 1. (End)
EXAMPLE
Triangle begins as:
0;
1, 1;
0, 4, 0;
1, 3, 3, 1;
0, 8, 0, 8, 0;
1, 5, 10, 10, 5, 1;
0, 12, 0, 40, 0, 12, 0;
1, 7, 21, 35, 35, 21, 7, 1;
0, 16, 0, 112, 0, 112, 0, 16, 0;
1, 9, 36, 84, 126, 126, 84, 36, 9, 1;
0, 20, 0, 240, 0, 504, 0, 240, 0, 20, 0;
MAPLE
seq(seq( binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2, k=0..n), n=0..12); # G. C. Greubel, Dec 01 2019
MATHEMATICA
f[n_, k_]:= Binomial[n, k]*(1 - (-1)^k)/2; Table[f[n, k]+f[n, n-k], {n, 0, 10}, {k, 0, n}]//Flatten
Table[Binomial[n, k]*(2-(-1)^k*(1+(-1)^n))/2, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)
PROG
(PARI) T(n, k) = binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2; \\ G. C. Greubel, Dec 01 2019
(Magma) [Binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 01 2019
(Sage) [[binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Dec 01 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(2 - (-1)^k*(1 + (-1)^n))/2 ))); # G. C. Greubel, Dec 01 2019
CROSSREFS
Sequence in context: A343953 A307769 A096793 * A298063 A298712 A127538
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 01 2009
STATUS
approved