login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155997 Triangle read by rows: T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 + (-1)^k)/2. 1
2, 1, 1, 2, 0, 2, 1, 3, 3, 1, 2, 0, 12, 0, 2, 1, 5, 10, 10, 5, 1, 2, 0, 30, 0, 30, 0, 2, 1, 7, 21, 35, 35, 21, 7, 1, 2, 0, 56, 0, 140, 0, 56, 0, 2, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2, 0, 90, 0, 420, 0, 420, 0, 90, 0, 2, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Row sums are: {2, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,...}

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 + (-1)^k)/2.

From G. C. Greubel, Dec 01 2019: (Start)

T(n, k) = binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2.

Sum_{k=0..n} T(n,k) = 2^n for n >= 1.

Sum_{k=0..n-1} T(n,k) = (2^(n+1) - 3 - (-1)^n)/2 = A140253(n), n >= 2. (End)

EXAMPLE

Triangle begins as:

  2;

  1, 1;

  2, 0,  2;

  1, 3,  3,  1;

  2, 0, 12,  0,   2;

  1, 5, 10, 10,   5,   1;

  2, 0, 30,  0,  30,   0,   2;

  1, 7, 21, 35,  35,  21,   7,  1;

  2, 0, 56,  0, 140,   0,  56,  0,  2;

  1, 9, 36, 84, 126, 126,  84, 36,  9, 1;

  2, 0, 90,  0, 420,   0, 420,  0, 90, 0, 2;

MAPLE

seq(seq( binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2, k=0..n), n=0..12); # G. C. Greubel, Dec 01 2019

MATHEMATICA

f[n_, k_]:= (Binomial[n, k] + (-1)^k*Binomial[n, k])/2; Table[f[n, k]+f[n, n-k], {n, 0, 10}, {k, 0, n}]//Flatten

Table[Binomial[n, k]*(2+(-1)^k*(1+(-1)^n))/2, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)

PROG

(PARI) T(n, k) = binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2; \\ G. C. Greubel, Dec 01 2019

(MAGMA) [Binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 01 2019

(Sage) [[binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Dec 01 2019

(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2 ))); # G. C. Greubel, Dec 01 2019

CROSSREFS

Sequence in context: A194529 A055138 A177717 * A326171 A123223 A088226

Adjacent sequences:  A155994 A155995 A155996 * A155998 A155999 A156000

KEYWORD

nonn,tabl,changed

AUTHOR

Roger L. Bagula, Feb 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)