login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140253
a(2*n) = 2*(2*4^(n-1)-1) and a(2*n-1) = 2*4^(n-1)-1.
6
-1, 1, 2, 7, 14, 31, 62, 127, 254, 511, 1022, 2047, 4094, 8191, 16382, 32767, 65534, 131071, 262142, 524287, 1048574, 2097151, 4194302, 8388607, 16777214, 33554431, 67108862, 134217727, 268435454, 536870911
OFFSET
0,3
COMMENTS
The inverse binomial transform is 1, 1, 4, -2, 10, -14, 34, -62 which leads to (-1)^(n+1)*A135440(n).
For n > 0: A266161(a(n)) = n and A266161(m) < n for m < a(n). - Reinhard Zumkeller, Dec 22 2015
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 23 2017
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
a(2*n) = 2*A083420(n-1) and a(2*n+1) = A083420(n)
a(n+1) - a(n) = A014551(n); Jacobsthal-Lucas numbers.
a(2*n) + a(2*n+1) = 9*A002450(n)
a(n+1) - 2*a(n) = A010674(n+1); repeat 3, 0.
a(n) + A000034(n+1) = A000079(n); powers of 2.
a(n)= a(n-1) + 2*a(n-2) + 3. - Gary Detlefs, Jun 22 2010
a(n+1) = A000069(2^n); odious numbers. - Johannes W. Meijer, Jun 24 2011
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2, a(0) = -1, a(1) = 1, a(2) = 2. - Philippe Deléham, Feb 25 2012
G.f.: (x^2+3*x-1)/((1-2*x)*(1-x)*(1+x)). - Philippe Deléham, Feb 25 2012
MAPLE
A140253:=proc(n): if type(n, odd) then 2*4^(((n+1)/2)-1)-1 else 2*(2*4^((n/2)-1)-1) fi: end: seq(A140253(n), n=0..29); # Johannes W. Meijer, Jun 24 2011
MATHEMATICA
Table[(2^(n+1) - 3 + (-1)^(n+1))/2, {n, 0, 30}] (* Jean-François Alcover, Jun 05 2017 *)
PROG
(Haskell)
import Data.List (transpose)
a140253 n = a140253_list !! n
a140253_list = -1 : concat
(transpose [a083420_list, map (* 2) a083420_list])
-- Reinhard Zumkeller, Dec 22 2015
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Jun 23 2008
EXTENSIONS
Edited, corrected and information added by Johannes W. Meijer, Jun 24 2011
STATUS
approved