The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258321 a(n) = Fibonacci(n) + n*Lucas(n). 2
 0, 2, 7, 14, 31, 60, 116, 216, 397, 718, 1285, 2278, 4008, 7006, 12179, 21070, 36299, 62304, 106588, 181812, 309305, 524942, 888977, 1502474, 2534736, 4269050, 7178911, 12054926, 20215927, 33859908, 56646980, 94667088, 158045413, 263604046, 439272349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1). FORMULA G.f.: x*(2 + 3*x - 2*x^2)/(1 - x - x^2)^2. a(n) = -a(-n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4). a(n) = (n+1)*Fibonacci(n+1) + (n-1)*Fibonacci(n-1). a(n) = 2*A001629(n+1) + 3*A001629(n) - 2*A001629(n-1) for n>0. Sum_{i>0} 1/a(i) = .782177794921758720... MATHEMATICA Table[Fibonacci[n] + n LucasL[n], {n, 0, 40}] (* or *) LinearRecurrence[{2, 1, -2, -1}, {0, 2, 7, 14}, 40] PROG (Sage) [fibonacci(n)+n*lucas_number2(n, 1, -1) for n in (0..40)] (Magma) [Fibonacci(n)+n*Lucas(n): n in [0..40]] CROSSREFS Cf. A061705: n*Fibonacci(n)+Lucas(n) = (n+1)*Fibonacci(n+1)-(n-1)*Fibonacci(n-1) with n>0. Cf. A000032, A000045, A001629. Sequence in context: A221320 A221235 A224916 * A034791 A140253 A018453 Adjacent sequences: A258318 A258319 A258320 * A258322 A258323 A258324 KEYWORD nonn,easy AUTHOR Bruno Berselli, May 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 12:31 EST 2023. Contains 367690 sequences. (Running on oeis4.)