login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258323
Sum T(n,k) over all partitions lambda of n into k distinct parts of Product_{i:lambda} prime(i); triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
14
1, 0, 2, 0, 3, 0, 5, 6, 0, 7, 10, 0, 11, 29, 0, 13, 43, 30, 0, 17, 94, 42, 0, 19, 128, 136, 0, 23, 231, 293, 0, 29, 279, 551, 210, 0, 31, 484, 892, 330, 0, 37, 584, 1765, 852, 0, 41, 903, 2570, 1826, 0, 43, 1051, 4273, 4207, 0, 47, 1552, 6747, 6595, 2310
OFFSET
0,3
LINKS
EXAMPLE
T(6,2) = 43 because the partitions of 6 into 2 distinct parts are {[5,1], [4,2]} and prime(5)*prime(1) + prime(4)*prime(2) = 11*2 + 7*3 = 22 + 21 = 43.
Triangle T(n,k) begins:
1
0, 2;
0, 3;
0, 5, 6;
0, 7, 10;
0, 11, 29;
0, 13, 43, 30;
0, 17, 94, 42;
0, 19, 128, 136;
0, 23, 231, 293;
0, 29, 279, 551, 210;
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(
add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..min(1, n/i)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2)):
seq(T(n), n=0..20);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Expand[Sum[g[n-i*j, i-1] * (Prime[i]*x)^j, {j, 0, Min[1, n/i]}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
CROSSREFS
Row sums give A147655.
T(n*(n+1)/2,n) = A002110(n).
T(n^2,n) = A321267(n).
Sequence in context: A379299 A011013 A138325 * A117175 A228086 A090482
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 26 2015
STATUS
approved