login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258359
Sum over all partitions lambda of n into 4 distinct parts of Product_{i:lambda} prime(i).
2
210, 330, 852, 1826, 4207, 6595, 13548, 21479, 38905, 59000, 95953, 142843, 231431, 324152, 487361, 683227, 1003028, 1347337, 1907811, 2541970, 3526314, 4597020, 6194948, 7969172, 10618000, 13401580, 17424498, 21875750, 28102737, 34685941, 43856482, 53791587
OFFSET
10,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 5), polynom)
end:
a:= n-> coeff(g(n$2), x, 4):
seq(a(n), n=10..60);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 4];
a /@ Range[10, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A258323.
Cf. A000040.
Sequence in context: A379762 A229272 A046402 * A325991 A264664 A360146
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved