The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258359 Sum over all partitions lambda of n into 4 distinct parts of Product_{i:lambda} prime(i). 2
 210, 330, 852, 1826, 4207, 6595, 13548, 21479, 38905, 59000, 95953, 142843, 231431, 324152, 487361, 683227, 1003028, 1347337, 1907811, 2541970, 3526314, 4597020, 6194948, 7969172, 10618000, 13401580, 17424498, 21875750, 28102737, 34685941, 43856482, 53791587 (list; graph; refs; listen; history; text; internal format)
 OFFSET 10,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 10..1000 MAPLE g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,       `if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j       , j=0..min(1, n/i)))), x, 5), polynom)     end: a:= n-> coeff(g(n\$2), x, 4): seq(a(n), n=10..60); MATHEMATICA g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]]; a[n_] := Coefficient[g[n, n], x, 4]; a /@ Range[10, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *) CROSSREFS Column k=4 of A258323. Cf. A000040. Sequence in context: A046386 A229272 A046402 * A325991 A264664 A147571 Adjacent sequences:  A258356 A258357 A258358 * A258360 A258361 A258362 KEYWORD nonn AUTHOR Alois P. Heinz, May 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 02:03 EST 2021. Contains 340213 sequences. (Running on oeis4.)