Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 11 2020 07:29:50
%S 210,330,852,1826,4207,6595,13548,21479,38905,59000,95953,142843,
%T 231431,324152,487361,683227,1003028,1347337,1907811,2541970,3526314,
%U 4597020,6194948,7969172,10618000,13401580,17424498,21875750,28102737,34685941,43856482,53791587
%N Sum over all partitions lambda of n into 4 distinct parts of Product_{i:lambda} prime(i).
%H Alois P. Heinz, <a href="/A258359/b258359.txt">Table of n, a(n) for n = 10..1000</a>
%p g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
%p `if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
%p , j=0..min(1, n/i)))), x, 5), polynom)
%p end:
%p a:= n-> coeff(g(n$2), x, 4):
%p seq(a(n), n=10..60);
%t g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
%t a[n_] := Coefficient[g[n, n], x, 4];
%t a /@ Range[10, 60] (* _Jean-François Alcover_, Dec 11 2020, after _Alois P. Heinz_ *)
%Y Column k=4 of A258323.
%Y Cf. A000040.
%K nonn
%O 10,1
%A _Alois P. Heinz_, May 27 2015