login
A258365
Sum over all partitions lambda of n into 10 distinct parts of Product_{i:lambda} prime(i).
2
6469693230, 6915878970, 16974457500, 30110390310, 56648021430, 91846692630, 166537585410, 268444482090, 465147702876, 769400170732, 1299770760139, 1975738341511, 3175348256422, 4843294699465, 7521662925183, 11300032117575, 17213602502741, 25375081790449
OFFSET
55,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 11), polynom)
end:
a:= n-> coeff(g(n$2), x, 10):
seq(a(n), n=55..75);
CROSSREFS
Column k=10 of A258323.
Cf. A000040.
Sequence in context: A198807 A358489 A281222 * A127342 A336681 A268845
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved