login
A281222
Products of 10 distinct primes (squarefree 10-almost primes).
5
6469693230, 6915878970, 8254436190, 8720021310, 9146807670, 9592993410, 10407767370, 10485364890, 10555815270, 11125544430, 11532931410, 11797675890, 11823922110, 12095513430, 12328305990, 12598876290, 12929686770, 13162479330, 13220677470, 13467764310
OFFSET
1,1
LINKS
Rick L. Shepherd and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 231 terms from Rick L. Shepherd)
Chai Wah Wu, Algorithms for complementary sequences, arXiv:2409.05844 [math.NT], 2024.
FORMULA
A005117 INTERSECT A046314.
EXAMPLE
a(1) = 2*3*5*7*11*13*17*19*23*29 = 6469693230 = prime(10)# = A002110(10), the 10th primorial number.
PROG
(PARI) IsInA281222(n) = n > 0 && issquarefree(n) && bigomega(n) == 10
(PARI) list(lim, pr=10, maxp=oo)=if(pr==1, return(primes([2, min(lim\1, maxp)]))); my(v=List(), pr1=pr-1, mx=prod(i=1, pr1, prime(i))); forprime(p=prime(pr), min(lim\mx, maxp), my(u=list(lim\p, pr1, p-1)); for(i=1, #u, listput(v, p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A281222(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 10)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 29 2024
CROSSREFS
Sequence in context: A172534 A198807 A358489 * A258365 A127342 A336681
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Jan 17 2017
STATUS
approved