OFFSET
1,1
COMMENTS
a^3 + b^3 = c^3 has no nontrivial integer solution, this list gives the "near misses" which satisfy a^3 + b^3 = c^3 +- 1.
If a (or b) = 1, then b (or a) = c will always satisfy a^3 + b^3 = c^3 + 1 (trivially).
If any of a,b,c is 0, the equation can be reduced to x^3 + y^3 = 1^3 (possibly taking negative values), which has no nontrivial solutions.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..200
EXAMPLE
a b c
--- --- ---
6 8 9
9 10 12
64 94 103
71 138 144
73 144 150
135 138 172
E.g.: 135^3 + 138^3 = 172^3 - 1.
MATHEMATICA
n = 500;
Do[If[a // IntegerQ, (*{a, b, c}*)c // Sow], {c, n}, {b, c/2^(1/3) // Ceiling, c - 1}, {a, ({-1, 1} + c^3 - b^3)^(1/3)}] // Reap // Last // Last(*//TableForm*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Albert Lau, Jan 18 2017
STATUS
approved