login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140256
Triangle read by columns: Column k is A014963 aerated with groups of (k-1) zeros.
7
1, 2, 1, 3, 0, 1, 2, 2, 0, 1, 5, 0, 0, 0, 1, 1, 3, 2, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 3, 0, 3, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 0, 2, 0, 0, 0, 0, 0, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,2
COMMENTS
If the row number n is prime, the row consists of T(n,1)=n followed by n-2 zeros and followed by T(n,n)=1.
Similar to A138618.
Row products of nonzero terms in row n, equals n. - Mats Granvik, May 22 2016
FORMULA
T(n,k) = A014963(n/k) = A014963(A126988(n,k)) if k|n, T(n,k)=0 otherwise. 1 <= k <= n.
From Mats Granvik, Apr 10 2016, May 22 2016: (Start)
Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then zeta(s)*(1 - 1/n^(s - 1)) -Sum_{i=2..n} Ts(n, i)/(i)^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0.
For n not equal to k: Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then zeta(s) -Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0.
Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then log(n) -Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0. (End)
[The above sentences need a lot of work! Parentheses might help. - N. J. A. Sloane, Mar 14 2017]
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
3, 0, 1;
2, 2, 0, 1;
5, 0, 0, 0, 1;
1, 3, 2, 0, 0, 1;
7, 0, 0, 0, 0, 0, 1;
2, 2, 0, 2, 0, 0, 0, 1;
3, 0, 3, 0, 0, 0, 0, 0, 1;
1, 5, 0, 0, 2, 0, 0, 0, 0, 1;
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
1, 1, 2, 3, 0, 2, 0, 0, 0, 0, 0, 1;
...
Column 2 = (1, 0, 2, 0, 3, 0, 2, 0, 5, 0, 1, 0, 7, ...).
MATHEMATICA
t[n_, k_] /; Divisible[n, k] := Exp[ MangoldtLambda[n/k] ]; t[_, _] = 0; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
(* recurrence *)
Clear[t, s, n, k, z, nn]; z = 1; nn = 14; t[n_, k_] := t[n, k] = If[k == 1, Zeta[s]*(1 - 1/n^(s - 1)) -Sum[t[n, i]/i^(s - 1), {i, 2, n}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; A = Table[Table[Limit[t[n, k], s -> z], {k, 1, n}], {n, 1, nn}]; Flatten[Exp[A]*Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Apr 09 2016, May 22 2016 *)
PROG
(Excel) =if(row()>=column(); if(mod(row(); column())=0; lookup(roundup(row()/column(); 0); A000027; A014963); 0); "")
CROSSREFS
Cf. A140255 (row sums), A014963.
Row products without the zero terms produce A000027. [Mats Granvik, Oct 08 2009]
Sequence in context: A182740 A228786 A140699 * A126206 A307744 A119709
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson and Mats Granvik, May 16 2008, Jun 11 2008
STATUS
approved