

A119709


Table where nth row (of A078822(n) terms) contains the distinct nonnegative integers which, when written in binary, are substrings of n written in binary.


9



0, 1, 0, 1, 2, 1, 3, 0, 1, 2, 4, 0, 1, 2, 5, 0, 1, 2, 3, 6, 1, 3, 7, 0, 1, 2, 4, 8, 0, 1, 2, 4, 9, 0, 1, 2, 5, 10, 0, 1, 2, 3, 5, 11, 0, 1, 2, 3, 4, 6, 12, 0, 1, 2, 3, 5, 6, 13, 0, 1, 2, 3, 6, 7, 14, 1, 3, 7, 15, 0, 1, 2, 4, 8, 16, 0, 1, 2, 4, 8, 17, 0, 1, 2, 4, 9, 18, 0, 1, 2, 3, 4, 9, 19, 0, 1, 2, 4, 5, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Reinhard Zumkeller, Rows n = 0..511 of table, flattened


EXAMPLE

12 in binary is 1100. Within this binary representation there is 0 (occurring twice), 1 (occurring twice), 10 (= 2 in decimal), 11 (= 3 in decimal), 100 (= 4 in decimal), 110 (= 6 in decimal) and 1100 (= 12 in decimal).
So row 12 = (0,1,2,3,4,6,12).


PROG

(Haskell)
import Data.List (isInfixOf)
a119709 n k = a119709_tabf !! n !! k
a119709_row n = map (foldr (\d v > v * 2 + toInteger d) 0) $
filter (`isInfixOf` (a030308_row n)) $ take (n + 1) a030308_tabf
a119709_tabf = map a119709_row [0..]
 Reinhard Zumkeller, Aug 14 2013


CROSSREFS

Cf. A078822.
Cf. A030308, A165416.
Sequence in context: A140256 A126206 A307744 * A328167 A253556 A252735
Adjacent sequences: A119706 A119707 A119708 * A119710 A119711 A119712


KEYWORD

tabf,easy,nonn,look


AUTHOR

Leroy Quet, Jun 10 2006


EXTENSIONS

Extended by Ray Chandler, Mar 13 2010


STATUS

approved



