The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119707 Number of distinct primes appearing in all partitions of n into prime parts. 0
 0, 1, 1, 1, 3, 2, 4, 3, 4, 4, 5, 4, 6, 5, 6, 6, 7, 6, 8, 7, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 13, 12, 14, 13, 14, 14, 15, 14, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 17, 16, 18, 17, 18, 18, 18, 18, 19, 18, 19, 19, 20, 19, 21, 20, 21, 21, 21, 21, 22 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS FORMULA When n = odd and >=5 then a(n) = pi(n) = A000720(n). When n = even and >=4 then a(n) = pi(n-2) = A000720(n-2) EXAMPLE There is only 1 distinct prime number involved in the partitions of 4, namely 2 (in 2+2 = 4). The partition 3+1 does not count, as 1 is not a prime. So a(4)= 1. There are 3 distinct primes involved in the partitions of 5 = 2+3, so a(5) = 3. MATHEMATICA f[n_] := If[OddQ@n, If[n == 3, 1, PrimePi@n], If[n == 2, 1, PrimePi[n - 2]]]; Array[f, 80] (* Robert G. Wilson v *) CROSSREFS Cf. A000720. Sequence in context: A333773 A007456 A316141 * A307118 A052938 A302391 Adjacent sequences:  A119704 A119705 A119706 * A119708 A119709 A119710 KEYWORD nonn AUTHOR Anton Joha, Jun 10 2006 EXTENSIONS Edited and extended by Robert G. Wilson v, Jun 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 18:42 EDT 2021. Contains 344959 sequences. (Running on oeis4.)